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I ntr oducti on
T ypically, ocean color algorithms use aerosol mixture models to evaluate the atmospheric contribution to the 
signal (atmospheric correction) and then derive the oceanic content, indexed by chlorophyll-a concentration. T he 
accuracy of ocean color retrievals from SeaW iFS, POL D E R , OC T S, M OD IS, M E R IS, etc., relies on assumptions of 
the optical properties associated with each aerosol type. G ordon and W ang [1994] use nine Shettle and Fenn 
[1979] maritime and tropospheric aerosol models with a humidity variation of aerosol optical properties. A  
coastal aerosol model, composed of a maritime and tropospheric model mixture, was also used.

Shettle and Fenn [1979] developed their models using aerosol samples from the lower tropospheric aerosol 
samples, for which they derived the optical characteristics. In atmospheric correction, however, we are more 
interested in the optical behavior of the aerosols through the entire atmosphere. C omparisons of SeaW iFS-
derived and in situ aerosol optical thickness values [Pietras et. al, 2001], on the other hand, have revealed a 
systematic underestimation of the A ngstrom coefficient. T his might be evidence that the reference models are 
not representative of actual conditions, although the discrepancy might also be due to the procedure of selecting 
models or radiometric calibration errors.

T o provide answers to the above questions (i.e., representation of the models and origin of atmospheric 
correction errors), and ultimately improve atmospheric correction, one needs to analyze optical atmospheric 
data under varied aerosol conditions, over oceans around the world. T he A E R ON E T  Program uses C IM E L  
radiometers, originally owned by the SIM BIOS Project, operating continuously at many island and coastal sites 
to monitor aerosol optical properties. T he maturity of the C IM E L  data processing procedures and inversion 
algorithms [D ubovik et al., 2000], allows us to make a global statistic on aerosol mixtures.

A  non-supervised classification of the retrieved aerosol properties of the total atmospheric column, i.e. the 
volume size distribution function and the refractive index, may allow us to determine the natural distribution 
and more importantly to identify clusters in this distribution. T hese clusters may be used as new aerosols 
mixtures in radiative transfer algorithms. W e show here a first attempt of classification, using a probabilistic self-
organizing map (PR SOM ) to approximate the distribution of the data, followed by a hierarchical clustering to 
identify geophysical conditions in the data base.

M ethod

D ata

W e classified particle volume size distributions (V D F) and corresponding refractive index (R E F) retrievals from the A E R ON E T  
inversion algorithm (level 1.5; screened for clouds) [D ubovik et al, 2000]. T he algorithm computes V D F for particle radii ranging 
from 0.05 to 15 micrometers. T he R E F real and imaginary parts are computed at four wavelengths: 440, 670, 870 and 1020 
nanometers. W e kept A E R ON E T  retrievals whose V D F relative error was less that 7%, solar zenith angle was greater than 45 
degrees and aerosol optical thickness was greater than 0.1, in order to minimize refractive index error. W e normalized the V D F 
and approximated it by three log-normal distributions, each one parameterized by a magnitude A , a center [µ] and a standard 
deviation [ε]. One data vector (denoted X) is composed by 17 variables: the 9 variables of the V D F, the 4 variables of the R E F real 
part and the 4 variables of the R E F imaginary part. W e performed two experiments, which correspond to different geographical 
ensembles. T he first experiment (E xp. 1) is made using island sites exclusively, the second experiment (E xp. 2) merges island 
sites and coastal sites. E xp. 1 had 543 data points, among which 80% are on Bermuda, L anai and K aashidhoo (see Fig. 1). E xp. 2 

had 3342 data points, among which 80% are on T urkey, W allops, A nmyon and D ry T ortugas (coastal sites, see Fig. 2).      
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F i gur e 3:  C l assi f i cati on method In order to reduce the number of data dimensions, 
w e preprocessed the tw o data ensembles using 
principal component analysis (PC A ) [Joliffe, 1986]. 
T he number of variables for data vector X  was 
reduced to 10. O ur classification is performed 
using three steps (Fig. 3):

Step 1 - W e summarize the information contained 
in the studied data set using a Probabilistic Self 
Organizing M ap (PR SOM ), which approximates 
the data distribution and leads to a definition of 
reference vectors (25 in this case). Self-Organizing 
M aps (SOM ) are neural networks, which were first 
introduced by K ohonen [1994], for visualizing and 
clustering n-dimensional observ ations. SO M  
models have two layers, where the input layer is 
the number of neurons equal to the data space 
dimensions (here 10) and the topological map 
layer, w hich is a discrete lattice of neurons, 

connected to the neurons of the input layer by weighted synapses. Once the SOM  is trained, each neuron, j, on the topological 
map represents a class of inputs, and is characterized by a reference vector composed of its weights. T here is a topological 
relationship (neighborhood) between different classes.

Step 2 - Since we had to choose the number of PR SOM  classes a priori, we make a hierarchical clustering of the reference 
vectors (with W ard dissimilarity) to control the number of statistically important clusters. W e determine the natural cluster 
divisions of the data set by comparing the length of each link in the cluster tree with the lengths of neighboring links below it 
in the tree. I f the length of a link differs from neighboring links, it indicates that there are dissimilarities between the objects 
at this level in the cluster tree. T his link is said to be inconsistent with the links around it. In cluster analysis, inconsistent 
links can indicate the border of a natural division in a data set

Step 3 - Once the cluster tree (dendrogram) is cut, the reference vectors of each cluster are combined using a weighted mean 
which takes into account the number and the variance of the actual data attached to each reference. Finally we obtain N  
classes, each one containing a normalized particle volume size distribution and one refractive index.

R E SU L T S of ST E P 1: the reference vectors

H ere we show here the results of E xp. 2. E ach plot in Fig. 4, 5 and 6 stands for one neuron of the PR SOM  (25 neurons total). In 
each plot we display the data gathered by the neuron (in black) and the corresponding reference vector which is used later in 
the classification (in green, the weights of the neuron). N ote that for the PR SOM , a data point is a single particle volume size 
distribution function attached to one refractive index, but because these do not have the same units, they are presented on 
separate figures: Fig. 4 displays the particle volume size distribution function, Fig 5. displays spectra of R E F real part, and 
Fig. 6 displays spectra of R E F imaginary part.
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R E SU L T S of ST E P 2: the hierarchical 
clustering of reference vectors

T he reference vectors of E xp. 1 and E xp. 2 
are clustered using W ard dissimilarity  
criteria (Fig. 7; E xp. 2 dendrogram). T his 
method minimizes an incremental sum of 
squares; that is, the increase in the total 
within group sum of squares as a result of 
joining two groups. T o initiate the linkage, 
a w eight is assigned to each referent, 
w hich is the number of data points it 
represents. T he computation of the link  
inconsistencies suggests to cut the 

dendrograms at the level of 11 connects. T he result on E xp. 2 is displayed in Fig. 8. N ote that a reference vector gathers the 
V D F and R E F information, thus they are not classified separately. W e have displayed the V D F information on a map. E ach 
plot of the same color (standing for a neuron of PR SOM ) belongs to the same class. On the map's right, the refractive index 
information is represented by the plot of the R E F imaginary part at 1020 nm, versus the R E F real part at 1020 nm of each 
neuron. T he spots of same color belong to the same class. T he colors match the V D F information colors.   
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C oncl usi on

A ck now l edgments

R efer ences

T wo non-supervised classifications made on different geographical data sets allowed us to isolate nine stable clusters in the 
A E R ON E T  data base (Fig. 10 clusters 1 to 8 and cluster 11), and two clusters originating from coastal sites (Fig. 10 clusters 9 and 
10). W e now need to physically interpret these aerosol mixtures by comparing them with current models [G ordon and W ang, 
1994], and more importantly, to determine their impact in terms of radiative transfer. T he reference vectors of the clusters must 
be interpreted with respect to aerosol phase function and single scattering albedo using the M ie theory, so we could test if they  
improve satellite aerosol products. T his will be performed on data from the SeaW iFS instrument.   
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R esul ts

T able 1: C luster M atches 
       E xp. 2         E xp. 1 
     cluster #     cluster # 
            1     <-->     2 
            2     <-->     4 
            3     <-->     3 
            4     <-->     6 
            5     <-->     1 
            6     <-->     5 
            7     <-->     7 
            8     <-->    10 

           11    <-->     8

A  weighted mean of the reference vectors of each class allows us to obtain one V D F and one R E F per 
class. T he results on E xp. 1 and 2 are displayed in Fig. 9 and 10 respectively. W e arbitrarily numbered 
the classes of each experiment. I f we compute the euclidian distance matrix between the 11 final 
referents of E xp. 1 and 2, we find that 9 clusters in each experiment have an equivalent cluster in the 
other experiment, as is shown in T able 1. T hese stable clusters do not depend on the geographical 
distribution of the data base. T heir expressions resulting from E xp. 2 should be statistically better as 
they have been built with much more data.  N ote that cluster 4 has strong absorption and cluster 11 has  
strong diffraction although they have a similar V D F. T he two additional clusters of E xp. 2 (9 and 10) 
cannot be put aside as they represent a lot of data with low variance. T hese two classes must be specific 
to coastal sites as their fine mode is well developed.          
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N on-supervized classi f ication of  ground-based radiometer retrievals (A E R O N E T ) in order to assess the distribution 
of  aerosol  volume size distributions and refractive indexes
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